Catalogue
How fast is 3D printing?

How fast can 3D printing be? In what scenarios can it really bring the dual advantages of speed and cost? This article will compare mainstream 3D printing technologies (such as FDM, SLA, SLS, MJF) with traditional processes (such as CNC, injection molding, casting), combined with typical production scenarios, to dismantle the technical core and commercial significance of "3D printing speed" for you.

I believe that after reading this article, you will have a clearer answer to "when to use 3D printing and why it is so fast and meaningful".

Fast 3D Printing vs. Traditional Crafts: Which is Faster?

Before we compare specific technologies, let's clarify a basic issue: FDM (fused deposition modeling), SLA (stereolithography), MJF (multi-jet fusion), these names are all different molding principles of 3D printing. They each have their own unique printing methods, material adaptability and speed performance, so they have their own advantages in efficiency. In sharp contrast to them, traditional manufacturing processes such as CNC, injection molding, and casting also have completely different production capacity structures and response rhythms. Let's disassemble them one by one to see whether 3D printing technology can catch up in terms of speed.

FDM vs. CNC

When you need to make a small tool sample urgently (for example, wThe advantage of this technology lies not only in its speed, but also in its flexibility. In particular, after adjusting the nozzle diameter (such as above 0.6mm), the nozzle speed can reach 150 mm/s, and a medium-complex part with a height of 100mm can be printed within 1 hour. FDM has obvious advantages in printing speed, which can significantly improve molding efficiency and is suitable for rapid prototyping and testing of medium-complexity prototypes.hen the design is completed at 3 pm and the installation verification is required in the evening), FDM (fused deposition modeling) technology will be the best solution.

But if it is changed to CNC, the delivery time is often measured in days due to the preparation of process documents, debugging of tool fixtures, and cutting process.

SLA/DLP vs. Injection Molding

SLA (stereolithography) is known for its high precision, with a layer thickness of 0.025–0.1 mm, an accuracy of up to ±25μm, and a molding speed of about 10–30 mm/h. The advantage of SLA printing speed is not its high speed, but its ability to output stably while maintaining surface quality, which is suitable for scenes with high requirements for process consistency.

DLP (digital light processing) is more efficient in printing. It increases the printing speed to 50-100 mm per hour by exposing the entire layer of the image at the same time, which is particularly efficient in the production of small-sized and large-quantity parts. The advantage of DLP printing speed is that it can quickly respond to batch requirements. It keeps a certain degree of accuracy while minimizing the unit molding time.

In contrast, although injection molding is very fast in single-piece molding speed, its overall delivery cycle is often extended by the pre-process of "mold development", which usually takes several days or even weeks and is accompanied by high costs. If the product design is frequently adjusted, the trial and error cost of repeated mold changes will also be very high.

SLM vs. Metal Casting

3D Printing Model.png

The biggest feature of SLM is that it can print complex structures in one go - for example, parts with through holes, buckles, and grids, without any support. Since SLM does not require mold opening and prefabrication processes, it can significantly speed up the overall delivery speed in the early stages of product development.

In contrast, although metal casting has cost advantages in mass production, the preparation process is long - mold design, casting cooling, and deburring often take several days or even a week. If you encounter a business scenario that requires rapid iteration, metal casting technology is basically unsolvable.

How fast 3D printing wins in three major scenarios with speed

In addition to the differences in the technology itself, the advantages of 3D printing speed also vary in different practical scenarios. From R&D proofing to mass production, we take a panoramic look at its actual performance at the application level.

Rapid prototyping

In the early stages of hardware product development, whether or not samples can be produced within a day often determines the efficiency of project iteration. Compared with traditional manufacturing that requires production scheduling, mold making, and debugging, 3D printing can achieve same-day design and same-day delivery. FDM printing is suitable for structural verification and preliminary testing, while SLA can achieve high-quality appearance models with a resolution of ±25μm. No mold is required, and samples can be produced directly, which is the biggest speed advantage of 3D printing in the prototype stage.

3D printing technology understands that prototype verification is not a one-time delivery, but a cycle mode of rapid trial and error-instant correction to promote continuous product evolution. Making trial and error fast and low-cost is the key force that 3D printing technology gives to the rhythm of product development.

Small batch custom production

When products pursue personalization and frequent iterations, the mold development and assembly processes of traditional manufacturing often cannot keep up with the pace. 3D printing technologies such as MJF and SLM do not require mold opening and can directly print finished parts. Taking MJF as an example, the industrial model has an hourly output of more than 3,000 cm⊃3;, which is suitable for typical scenarios such as orthopedic brackets and customized shells.

The key to small-batch customization is not the unit cost, but the response speed of delivery and the freedom of design. 3D printing provides a new generation of flexible manufacturing path.

Large-scale standardized production

Although injection molding and CNC still dominate in mass manufacturing, 3D printing is becoming an accelerator for early verification. In the stages of new product trial sales and regional testing, 3D printing can deliver hundreds of samples within a few days, seize the market time window, and reduce the risk of repeated mold modifications.

In mass manufacturing, 3D printing is not a substitute, but an accelerator. It helps companies quickly try and fail in uncertainty and make more informed judgments before formal mass production.

In an era where manufacturing efficiency has become a competitive threshold, the speed dividend of 3D printing has moved from prototypes to mass production, from innovation to profits. It can not only fill the response window of traditional processes, but also provide a decision buffer in uncertainty. The question is not whether 3D printing can be used, but when it is most cost-effective to use it. The following table summarizes the performance of various manufacturing methods in terms of speed, flexibility and cost under different production goals, helping you to judge at a glance:

微信图片_20250515115923.png

3D printing is not the opposite of traditional manufacturing, but a powerful complement to it. From rapid prototyping, flexible trial production to product verification, it allows companies to conduct trial and error quickly and at low cost, speeding up the pace of every idea to implementation. This is exactly the key point mentioned at the beginning of the article: the real manufacturing advantage does not lie in how fast the machine runs, but in whether you can use "speed" on the blade of innovation at the right time.

Want to learn more about which 3D printing solution is best for your product design or production line? Contact us for a free consultation.


Get Quote

Contact

Contact